MTH 301: Group Theory Homework I

(Due 19/08)

- 1. In each of the following, prove that (G, \star) is a group.
 - (a) $(\mathbb{C} \{0\}, \cdot)$, where \cdot denotes the complex product.
 - (b) $(GL(n, \mathbb{R}), \cdot)$, where \cdot denotes the matrix product.
 - (c) $(\mathbb{Z}_n, +)$
 - (d) (S_n, \circ)
 - (e) (G, +), where $G = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$
 - (f) (G, \cdot) , where $G = \{z \in \mathbb{C} \mid z^n = 1, \text{ for some fixed } n \in \mathbb{Z}^+ \}.$
- 2. In each of the following, determine why (G, \star) is not a group
 - (a) $(\mathbb{Z}, -)$
 - (b) $(\mathbb{Q} \{0\}, \div)$
 - (c) (\mathbb{R}, \star) , where $a \star b = a + b + ab$.
- 3. Let G be a group and $g \in G$. Then:
 - (a) Show that $g^2 = 1$ if and only if o(g) = 1 or 2.
 - (b) $o(g) = o(g^{-1}).$
 - (c) If o(g) = n, then for some $n \in \mathbb{Z}^+$, $g^{-1} = g^{n-1}$.
 - (d) $o(g) = o(hgh^{-1})$ for any $h \in G$.
- 4. Let G be a group. Prove that if $g^2 = 1$ for every $g \in G$, then G is abelian.